【简介】下面是小编帮大家整理的五年级上册数学知识点新人教版(共4篇),希望对大家有所帮助。在此,感谢网友“小邋遢”投稿本文!
篇1:五年级上册数学知识点新人教版
五年级上册数学知识点新人教版
观察物体
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)
小数乘法
一、小数乘整数 (利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。如:3.60 “0” 应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597 保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。
数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
11、长方体的表面积=(长×宽+长×高+宽×高) ×2 公式:S=(a×b+a×c+b×c)×2
12、长方体的体积=长×宽×高公式:V = abh
13、正方体的表面积=棱长×棱长×6 公式: S=6a2
14、长方体(或正方体)的体积=底面积×高公式:V = abh
数学图形的运动知识点
1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫轴对称图形,那条直线就是对称轴。
2、在轴对称图形中,对称的两个点到对称轴的距离相等。
3、对平移和旋转现象的初步认识:
(1)张叔叔在笔直的公路上开车,方向盘的运动是(旋转)现象。
(2)升国旗时,国旗的升降运动是(平移)现象。
(3)妈妈用拖布擦地,是(平移)现象。
(4)自行车的车轮转了一圈又一圈是(旋转)现象。
4、镜子内外的左右方向是相反的。
篇2:新人教版五年级数学知识点
五年级上册数学知识点
一、意义
1、小数乘整数:求几个相同加数的和的简便运算。
如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示为(3.2×5),这个乘法算式表示的意义是(5个3.2是多少)
2、小数乘小数:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
二、算理
1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
小数乘法计算法则简记为:一算,二看,三数,四点,五去;
2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。
4、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b
三、积的近似数
1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。
步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。
注意:表示近似数时小数末尾的0不能随便去掉。
如:0.599保留两位小数是( )
2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。
四、混合运算
小数四则运算顺序跟整数是一样的。
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
关于乘法分配律的简算是这一部分的重点和难点。
案例:0.25×4.78×4
0.65×202
2.4×1.5-2.4
2.4×0.6+2.6×0.6
12.5×32×0.25
五、解决问题
1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。
2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。
小学五年级上册数学《简易方程》知识点
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
数学学习方法技巧
第一,不懂就问。学习的时候多少都会遇到自己难以解决的问题,这时候就要积极提问、讨论,不要因为害怕胆小,就憋着问题或者略过问题,这样只会造成你在学习上的隐患。
对于那些比较难的问题,可以去向老师提问,或者跟其他同学讨论,你就可能从别人那里学习到好的的方法和技巧。要知道,学习的基础是勤学,学习的关键是好问。
第二,实战培养。有的同学在平时的学习过程中,表现都很好,作业也完成的很不错,可是一到了考试的时候,成绩就不那么理想了,所以在平时,大家要把作业当成考试,然后在考试时,就把它当成作业,适时的去调整方法。
第三,把握良机。如果在一定时间过后,没有对知识点进行复习,就会遗忘。每个人记忆的时长都是不一样的,可以根据自己遗忘的规律去复习功课,这样就能保证牢牢的掌握好知识点了。
篇3:人教版五年级数学上册知识点
知识点概念总结:
1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。
7.数的互化:
(1)小数化成分数
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数
用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)化有限小数
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数
只要把小数点向右移动两位,同时在后面添上百分号。
(5)百分数化成小数
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(7)百分数化成小数
先把百分数改写成分数,能约分的要约成最简分数。
8.小数的分类:
(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。
(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……
(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。
9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。
10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。
11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。
12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。
13.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
14.解方程:解方程,求方程的解的过程叫做解方程。
15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。
16.列方程解答应用题的步骤:
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
篇4:人教版五年级数学上册知识点
列方程解应用题的方法:
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
列方程解应用题的范围:
小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
平行四边形的面积公式:
底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah
三角形面积公式:
S△=1/2xah(a是三角形的底,h是底所对应的高)
梯形面积公式:
(1)梯形的面积公式:(上底+下底)×高÷2.
用字母表示:(a+b)×h÷2
(2)另一计算公式:中位线×高
用字母表示:l·h
(3)对角线互相垂直的梯形:对角线×对角线÷2.